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Abstract
In this commentary paper, we present some of the main ideas on deriving a modified
fluctuation-dissipation theorem off equilibrium, which in the end can all be related to an
approach based on a generalized Hatano–Sasa relation. This generalized Hatano–Sasa relation
also contains an interesting inequality, which can be viewed as a generalization of the second
law of thermodynamics to transitions between non-equilibrium states.

PACS numbers: 05.70.Ln, 05.40.−a

1. Introduction

The fluctuation-dissipation theorem (FDT) is a cornerstone
of statistical physics, since it allows one to extract linear
response properties from the measurement of equilibrium
fluctuations [1]. Beyond the equilibrium regime, the relation
between the response and correlations does not take a
simple and universal form. For this reason, the search
for generalizations of the fluctuation-dissipation theorem
off equilibrium has been an active topic both theoretically
and experimentally for many years, as shown by a recent
review [2]. On the experimental side, deviations from
the fluctuation-dissipation theorem have been observed
experimentally in many different systems: driven systems
such as shaken granular matter, sheared fluids, manipulated
colloidal systems, biological systems and glassy systems such
as dense colloids or spin glasses [3–6].

For many years, these diverse systems appeared unrelated
to each other and there was no sign of common universal
features that could help construct a general theory. All this
was changed fundamentally with the discovery of fluctuation
relations, which are equalities valid for many classes of
models and arbitrarily far from equilibrium, and which link
distributions of various thermodynamic quantities [7–12].
Such results are particularly relevant for small systems,
because small systems are characterized by large fluctuations.
But, they are also useful for systems which are not
small. Indeed, one can obtain through an expansion of the
fluctuation theorems in the linear regime various modified
fluctuation-dissipation theorems (MFDTs), which offer useful

generalizations of the fluctuation-dissipation theorem off
equilibrium. Recently, three main routes have emerged to
construct such generalizations.

• In the first route opened by Cugliandolo et al [3] and
continued by Lippiello et al [4] and Diezemann [5], the
response function is written as a sum of a time derivative
of the correlation function (similar to the equilibrium
FDT), plus an additive function, called the asymmetry,
which vanishes under equilibrium conditions. Baiesi
et al [13] took this idea much further by identifying the
contribution of the entropy production in the response
function and by introducing the traffic or dynamical
activity which enters in the correlation function for the
MFDT.

• In the second route opened by Speck and Seifert [14],
the modified FDT near a non-equilibrium steady state
(NESS) can be formulated in terms of the so-called
local velocity, which originates from the local currents
present in this NESS. A similar additive structure in
MFDT was also found in the Harada–Sasa relation, which
connects the energy dissipation with the violation of the
FDT near an NESS [15], and in a modified Einstein
relation found in studies of driven diffusive systems [16].
The idea of a local velocity was further extended to
more general Langevin dynamics by Chétrite et al [17],
who also provided the MFDT with a Lagrangian frame
interpretation [18]. In the end, it appears that the first and
second routes are closely related [13, 19].

• In the third approach developed by Prost et al [20] based
on an expansion of the Hatano–Sasa relation [12], the
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modified fluctuation theorem valid near an NESS takes
the standard equilibrium form except that it involves
a new observable, a function of the NESS. This new
observable is related to the system stochastic entropy,
which here must be evaluated in the NESS [21, 22].

At first sight, the first and second approaches seem more
general than the third one because they hold for general
non-equilibrium situations, whereas the third one is limited
to systems close to a non-equilibrium stationary state; but
in fact, it is possible to extend also the third approach to a
general non-equilibrium state as we have shown in [23]. In
the end, it appears that the three approaches provide closely
related formulations to generalize the FDT to non-equilibrium
situations. This, of course, had to be the case since all these
approaches lead in the end to the same response function.

In this commentary paper, we first recall the main ideas
behind an MFDT using the third approach, which is based
on a generalized Hatano–Sasa relation. This relation contains
also an interesting inequality which generalizes the second
law of thermodynamics to non-stationary states [24, 25].
We end the paper by a short discussion of possible
experimental systems on which these ideas could be tested.
This research has benefited from interactions with many
participants during the Nordita program titled ‘Foundations
and Applications of Non-equilibrium Statistical Mechanics’,
which was conducted in September–October 2011.

2. The third route and the generalized Hatano–Sasa
relation

We consider a system that is assumed to evolve according
to a continuous-time Markovian dynamics of a pure jump
type [26]. Let us introduce the transition rate wt (c, c′) for the
rate to jump from a state c to a state c′ at time t . The subscript
t in wt (c, c′) describes processes that are non-stationary even
in the absence of driving. The origin of such processes is
arbitrary; they can result from a quench of some parameter
like temperature or from an additional driving, which does
not need to be specified. At time t = 0, an arbitrary driving
protocol ht is applied to the system, and we denote by
pt (c, [h]) the probability to observe the system in the state
c at a time t in the presence of this driving. The evolution of
the system for t > 0 is controlled by the generator Lht

t , which
is defined as

Lht
t (c

′, c)= w
ht
t (c

′, c)− δ(c, c′)
∑

c′′

w
ht
t (c

′, c′′), (1)

where wht
t (c

′, c) is a transition rate in the presence of the
driving [h]. Then pt (c, [h]) is the solution of

dpt (c, [h])

dt
=

∑
c′

pt (c
′, [h])Lht

t (c
′, c). (2)

The notation pt (c, [h]) emphasizes that this probability
distribution depends functionally on the whole protocol
history [h] up to time t . We assume that, at t = 0 there is
no driving, so that p0(c, [h0])= p0(c). We also note that, in
practice, the driving [h] may not start immediately at t = 0+

but may be turned on only later, after a certain time (such a
delay corresponds to what is called the waiting time in the
context of aging systems).

We now introduce a different probability distribution
denoted by πt (c, h), which represents the probability to
observe the system in the state c at a time t > 0 in the presence
of a constant (time-independent) driving h. In other words,
πt (c, h) can be constructed from pt (c, [h]) by freezing the
time dependence in the driving [h]. This distribution, which
will play a key role in the following, obeys the master equation(

∂πt

∂t

)
(c, h)=

∑
c′

πt (c
′, h)Lh

t (c
′, c). (3)

We emphasize that when the function πt (c, h) is evaluated on
a point (ct , ht ) of the trajectory [c], one obtains a quantity
which is distinct from the full solution pt (c, [h]), because of
the functional dependence in the driving.

By evaluating πt (c, h) on a trajectory [c], one can
construct the following functional:

Y[c] = −

∫ t

0
dτ ḣτ∂h lnπτ (cτ , hτ ), (4)

which has clear similarities with the functionals introduced
by Jarzynksi [9] and Hatano and Sasa [12]. Using a
Feynman–Kac approach, which has also played a central
role in the derivation of the Jarzynski relation [27], we have
shown in [23] that this functional Y obeys a generalized
Hatano–Sasa relation:

〈At (ct , ht ) exp (−Y[c])〉[h] = 〈At (ct , ht )〉πt , (5)

where At (ct , ht ) is a dynamic observable which depends on
the configuration ct and on the value of the control parameter
at time t , namely ht . Note that 〈· · · 〉πt and 〈· · · 〉[h] represent,
respectively, averages with respect to πt (c, ht ) or with respect
to the perturbed dynamics corresponding to pt (c, [h]). It is
important to point out that equation (5) holds in the absence
of a thermodynamic structure (there is no need for a first
law of thermodynamics for instance) and without a reference
stationary state.

We now discuss the consequences of the above
fluctuation relation for the linear response theory near
an arbitrary non-equilibrium state. The response function
associated with At (ct , ht ) reads, for a perturbation applied at
an earlier time t ′ > 0:

R(t, t ′)=
δ〈At (ct , ht )〉[h]

δht ′

∣∣∣∣
h→0

, (6)

where δ/δht ′ is our notation for functional derivatives. From
the functional derivative with respect to ht ′ of the linear
expansion of equation (5) for small Y , one obtains the
following MFDT valid near an arbitrary non-equilibrium
state [23], which reads for t > t ′ > 0:

R(t, t ′)= −
d

dt ′

〈
∂hψt ′(ct ′ , h)|h→0 At (ct , ht )

〉
, (7)

with ψt ′(c, h)= −lnπt ′(c, h). Indeed, the functional
derivative of the right-hand side of equation (5) vanishes
because t > t ′ and the left-hand side produces the above
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result. It is immediate to check that the response function
takes the familiar form of the standard FDT when the
unperturbed dynamics is at equilibrium because in that
case, the distribution πt becomes the equilibrium Boltzmann
distribution.

The above relation qualifies for a modified fluctuation-
dissipation because the response function is now expressed in
terms of a correlation function of observables with respect to
the unperturbed dynamics, denoted by 〈· · · 〉 as in the standard
FDT [28]. It is important to point out that equation (7)
was first derived by this method in [20] for the particular
choice At (ct , ht )= ∂htψt (ct , ht ), in which case the MFDT
takes a more symmetric form. In that work, it was assumed
that the initial state is stationary and that the dynamics
followed by the system at constant perturbation h is time
independent (Lh

t ≡ Lh). It was later realized that the MFDT
near a non-equilibrium stationary state holds in fact for a
general observable At (ct , ht ) [22] and that the method used in
[20] could be extended to such an arbitrary observable [21].

3. The second route and the origin of the additive
structure in MFDT

The notion of stochastic entropy [29, 30] provides
significant insights into MFDTs as shown recently by
several authors [13, 21–23]. This notion is defined on a
given trajectory but is distinct from the Kolmogorov–Sinai
entropy [31], which is also a trajectory quantity. The latter
is defined as the logarithm of the probability of a partition
of a given trajectory into visited configurations in a specific
order. The stochastic entropy involved here is a very
different object which is constructed from the full solution
of the Master/Fokker Planck equation of the problem,
namely pt (c, [h]), which becomes a trajectory-dependent
random variable when evaluated on a specific configuration
c = ct taken by the system at time t when following the
trajectory [c]. The name ‘entropy’ is justified by the property
that the average of the stochastic entropy is the Shannon
entropy constructed from the distribution pt (c, [h]) and
by the fact that it is a state function just like the standard
entropy. For the MFDT, it is in fact not required to know
the ‘full’ stochastic entropy −ln pt (ct , [h])= st (ct , [h]),
because only the response to linear order in perturbation is
needed. Therefore, only a reduced version of it is needed,
which is built from πt (c, h) instead of pt (c, [h]), where
the former quantity is obtained from the latter by freezing
the time dependence of the driving. In the following, we
will need only this reduced stochastic entropy denoted
by ψt (ct , h)= −lnπt (ct , h) instead of the real stochastic
entropy. This is the function which enters the response
function of the MFDT in equation (7).

The additive structure in MFDTs that is apparent in
the first and second routes mentioned in the introduction
follows from a decomposition of the stochastic entropy,
more precisely of its reduced counterpart. Indeed, 1st =

st (ct , [h])− s0(c0, [h0]) is a system trajectory entropy
production, which can be written as 1st = −1sr

t + s tot
t , in

terms of the reservoir entropy production 1sr
t (also called

medium entropy in [30]) and the total entropy production

1s tot
t . From this decomposition, the response function in

equation (7) splits into

R(t, t ′)= −
d

dt ′
〈∂h1st ′ |h→0 At (ct , ht )〉

= Req(t, t ′)− Rneq(t, t ′), (8)

where

Req(t, t ′)=
d

dt ′

〈
∂h1sr

t ′

∣∣
h→0 At (ct , ht )

〉
(9)

and

Rneq(t, t ′)=
d

dt ′

〈
∂h1s tot

t ′

∣∣
h→0 At (ct , ht )

〉
, (10)

where the derivative of the various stochastic entropies with
respect to the control parameter h should be understood as an
infinitesimal shift of the protocol by a global constant. In the
previous decomposition, the first term Req(t, t ′) is analogous
to (and contains in the appropriate limit) the equilibrium FDT,
whereas the second term Rneq(t, t ′) represents an additive
correction which vanishes at equilibrium.

Following [14], one can rewrite these response functions
without time derivatives, by introducing two local currents jt ′

and νt ′ . These currents depend on the unperturbed solution
of the master equation ρt (c), which is the probability to
be in state c at time t . The generator of the unperturbed
master equation is L t (c′, c) defined as in equation (1) but
with unperturbed rates wt (c, c′) instead of perturbed ones
wh

t (c, c′). The two local currents jt ′ and νt ′ are then defined
as [23]

jt ′(c′)=

∑
c

ρt ′(c)

ρt ′(c′)
wt ′(c, c′)∂h ln

wh
t ′(c, c′)

wh
t ′(c′, c)

∣∣∣∣
h→0

(11)

and

νt ′(c′)=

∑
c

Jt ′(c′, c)

ρt ′(c′)
∂h lnwh

t ′(c′, c)
∣∣
h→0 . (12)

Both currents νt ′(c′) and jt ′(ct ′) have the same average, which
represents a physical current

〈 jt ′(ct ′)〉 =

∑
c,c′

Jt ′(c′, c)∂h ln wh
t ′(c′, c)

∣∣
h→0 , (13)

with Jt ′(c′, c)= ρt ′(c′)wt ′(c′, c)− ρt ′(c)wt ′(c, c′) the
unperturbed probability current between the states c′

and c. In terms of the local currents, the response takes the
form

R(t, t ′)= 〈( jt ′(ct ′)− νt ′(ct ′))At (ct , ht )〉 . (14)

This response function has the same structure as that found
by Speck and Seifert [14] in their original study of the
MFDT near an NESS. In that work formulated for Langevin
dynamics, Speck et al introduced a local velocity defined
as the ratio of the stationary probability current divided by
the stationary probability distribution of the NESS. This
framework was later extended to general discrete Markovian
models [32]. The current νt ′ introduced above can be
viewed as a generalization of this local velocity to arbitrary
non-equilibrium states. Note that such a decomposition in
terms of the local currents jt ′ and νt ′ is not unique [22].
However, what seems to be common to all the formulations
of MFDT is the additive structure of the response function,
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which appears here as a result of the splitting of the stochastic
entropy into two parts (medium and entropy production). As
we shall see in the next section, another related decomposition
enters the first route.

4. The first route and the formulation of MFDT
using notions of traffic and asymmetry

Following [13], and denoting the escape rate λh
t (c

′)=∑
c 6=c′ wh

t (c
′, c), we define the traffic by the following

functional:

T [c] = 2
∫ t

0
dt ′λ

h′
t

t ′ (ct ′). (15)

Let us also make a particular choice of transition rates
compatible with detailed balance, namely

w
ht ′

t ′ (c, c′)= wt ′(c, c′) exp

(
βht ′

O(c′)− O(c)

2

)
, (16)

where O(c) represents a physical time-independent
observable. Then, the current νt ′(ct ′) takes the form

νt ′(ct ′)=
1
2τt ′(ct ′)+ 1

2 jt ′(ct ′), (17)

where we have introduced

τt ′(ct ′)=
δT [c]

δht ′

∣∣∣∣
h→0

, (18)

which is the excess of traffic introduced in [13], where excess
is meant with reference with the unperturbed dynamics. In
order to simplify the notation, we will omit the dependence
of At (ct , ht ) on the protocol. With the rates given in
equation (16), we have

Req(t, t ′)= 〈 jt ′(ct ′)At (ct )〉 = β

〈
d

dt ′
O(ct ′)At (ct )

〉
= β

d

dt ′
〈O(ct ′)At (ct )〉 .

We have used the following definition for the derivative of an
observable when it appears inside a correlation function:

d

dt
O(ct )=

∑
i

δ(t − ti ) (Ot (ci )− Ot (ci−1)) , (19)

where ti corresponds to the time of jump between the state
ci−1 and ci in the trajectory ct . Note that Baiesi et al [13]
use a different notation according to which dO(ct )/dt denotes
a quantity that depends explicitly on the generator of the
dynamics. We find the notation based on equation (19) simpler
to use because with this choice, the derivative is independent
of the generator of the dynamics and can thus pass inside the
correlation function, which is not the case otherwise. In the
end, the response function obtained in [13] is recovered:

R(t, t ′)=
β

2

d

dt ′
〈O(ct ′)At (ct )〉 −

1

2
〈τt ′(ct ′)At (ct )〉 . (20)

Note that in equilibrium both terms on the rhs of equation (20)
are equal and contribute to half of the response. This form of
response is less general than the one of equations (7)–(14)
because it relies on a particular parametrization of the

rates, namely equation (16). However, the method can be
generalized to a different parametrization, as long as it is
specified. The above response function can be equivalently
written in terms of the so-called asymmetry [3–5], which we
denote below by Asi(t, t ′):

R(t, t ′)=
β

2

d

dt ′
〈O(ct ′)At (ct )〉

−
β

2

d

dt
〈O(ct ′)At (ct )〉 + Asi(t, t ′), (21)

since we have, for t > t ′, that

d

dt
〈O(ct )At ′(ct ′)〉 =

∑
c,c′,c′′

O(c)L t (c
′′, c)

× ρ(c′′t |c′t ′)ρt ′(c′)At ′(c′),

=

∑
c′,c′′

ρ(c′′t, c′t ′)At ′(c′)

[∑
c

(O(c)− O(c′′))L t (c
′′, c)

]
,

=
1

β
〈τt (ct )At ′(ct ′)〉 , (22)

where we have denoted the probability of finding the system
in state c′′ at time t given that it was in state c′ at time
t ′ in the unperturbed dynamics by ρ(c′′t |c′t ′), and L t (c, c′)

is the generator of the unperturbed dynamics defined as
in equation (1) for the perturbed dynamics. As the name
suggests, the asymmetry is asymmetric in the exchange of t
and t ′ and vanishes at equilibrium as can be checked from its
expression for this case:

Asi(t, t ′)=
1

2
〈τt (ct )At ′(ct ′)〉 −

1
2 〈τt ′(ct ′)At (ct )〉 . (23)

In the end, starting from the entropic form of MFDT, we have
obtained the response in terms of the local currents from the
decomposition of the system entropy production. Adding a
hypothesis on the perturbation of the rates, we recovered the
MFDT with excess of traffic and the one with asymmetry.

5. Inequalities generalizing the second law of
thermodynamics

The generalized Hatano–Sasa relation of equation (5)
mentioned in section 2 on the third route is also interesting
in that it contains a generalization of the second law.
This can be seen by substituting into this equation the
particular choice At (ct , ht )= δ(c − ct )pt (ct , ht )/πt (ct , ht ).
Since it is clear that in this case 〈A(ct , ht )〉πt = pt (ct , ht ), one
obtains

pt (c, [h])=

〈
pt (ct , [h])

πt (ct , ht )
δ(c − ct ) exp (−Y[c])

〉
, (24)

which can be rewritten as

pt (c, [h])=
〈
δ(c − ct ) exp

(
−Y[c] −1sb

)〉
(25)

with 1sb
= ln[πt (ct , ht )/pt (ct , [h])]. This boundary term

1sb represents the difference between the stochastic entropy
production 1st and its reduced analogue 1ψt = ψt (ct , ht )−

ψ0(c0, h0), and the average of this quantity with respect
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to pt represents the Kullback–Leibler divergence D(pt ||πt )

between the two distributions pt and πt . Furthermore, by
integrating equation (25) over c, one obtains an integral
fluctuation theorem for Y +1sb, which by Jensen’s inequality
leads to

〈Y〉>−〈1sb
〉 = D(pt ||πt ). (26)

Note that the positivity of the Kullback–Leibler divergence
implies that 〈Y〉> 0, which also follows directly from
equation (5) with the choice At = 1. In other words, the
inequality of equation (26) means that the average of the
work-like functional Y dictates the maximum amount of lag
between the two distributions pt and πt . This is reminiscent
of a very similar relation derived for systems initially at
equilibrium [33]

〈Wdiss〉> kBT D(pt ||peq
t ), (27)

where Wdiss is the dissipated work and peq
t represents the

equilibrium distribution evaluated at the current value of the
control parameter. Therefore, equation (26) should be viewed
as a generalization of this result to the case when the initial
distribution is time dependent.

When the final time t is sufficiently long for the
relaxation of pt toward πt to have taken place, the present
framework contains a generalization of the second law
to transitions between non-stationary states corresponding
to fixed values of the control parameter [24, 25]. This
is analogous to the generalization of the second law of
thermodynamics to transitions between NESSs, which follows
from the standard Hatano–Sasa relation [12]. Note also that
the inequality holds for an arbitrary protocol, and becomes
an equality in the adiabatic limit of very slow driving
(ḣt → 0) because in this case pt → πt and 〈Y〉 → 0, which
follows directly from the definition of Y . This property is
essential for identifying this inequality as a generalization
of the second law of thermodynamics to transitions between
non-equilibrium states.

In [34], it was shown that remarkably the total entropy
production can be split into two parts, the so-called adiabatic
part (corresponding to the contribution of the entropy
production which stays present in the limit of slow driving
[12, 35]) and the remaining non-adiabatic part. Each part
satisfies a detailed fluctuation theorem, which means that
the second law can be split into these two contributions.
It is natural to ask whether other decompositions of this
kind are possible [36] and whether the existence of a
stationary distribution is required to define the adiabatic and
non-adiabatic parts of the total entropy production. With the
present formalism, one can show that the special structure
of the ‘three detailed fluctuation theorems’ is lost when
a stationary reference is not available, although a detailed
fluctuation theorem still holds separately for the adiabatic
or non-adiabatic part of the dynamical action [24, 25]. The
fluctuation theorem corresponding to the non-adiabatic part
leads to equation (26).

6. Discussion

We have presented a general framework for systems which
are prepared in a non-stationary non-equilibrium state in the
absence of any perturbation and which are then further driven

by the application of a time-dependent perturbation. Typically,
for applications, this perturbation is applied as a means of
probing the non-equilibrium properties of the unperturbed
non-equilibrium state. We can formally distinguish two
different situations depending on the way the non-equilibrium
state is prepared.

In the first category, the non-equilibrium state is created
by some driving, and thus the perturbation that will be applied
to it after some time should be viewed as a second driving. As
a particular simple example of this category, one can create
the initial state by a periodic driving. In these conditions, our
approach predicts an MFDT near periodically driven states
and a modified second law of thermodynamics for transitions
between periodically driven states. Such periodically driven
states are achievable in a number of experimental systems
such as a vibrated granular medium, electronic circuits,
manipulated colloidal systems or quantum optics for instance.

In the second category, the initial non-stationary state is a
transient state produced by the choice of initial conditions. For
instance, the system has been prepared by a quench of some
parameter which can be the temperature or the concentration
for instance, and the dynamics that follows involves relaxation
or coarsening. This is typically what happens in a glassy
system, where the slow relaxation following this quench leads
to aging. In a recent experiment, the energy fluctuations of
a Brownian particle in an aging gel have been measured and
have been shown to satisfy a fluctuation theorem [37]. In this
experiment, the gel in which the probe particle is embedded
can be viewed as a non-equilibrium bath, which is evolving in
time as a result of aging. With the same experimental setup,
the deviation from the fluctuation theorem has been measured
by evaluating separately the correlations and the response
function [38]. In our opinion, these exciting experimental
results could open the way to more systematic tests of the
theoretical framework of MFDT and of the modified second
law, for systems in contact with a non-equilibrium bath [25].

When implementing this program on complex realistic
systems, one will encounter the difficulty already present
in the standard Hatano–Sasa that the distribution πt (c, h)
(or pstat(c, h) for the standard Hatano–Sasa) is difficult
to determine. Indeed, this distribution can be calculated
analytically only in a few simple cases, such as the
case of a Langevin particle in a harmonic trap studied
in the experimental references mentioned above [37, 38].
For applications to complex systems, this distribution will
not be accessible analytically. However, if the system (or
sub-system) of interest is of small size, the numerical
determination of this distribution is possible through extensive
simulations as we have shown with an example based on the
Glauber–Ising model [23]. Among the various other strategies
that can facilitate this numerical determination, one recent
suggestion is to determine the distribution iteratively by
starting from an approximate ansatz function [39]. Another
potentially very promising idea is to try to determine directly
the generating function of the currents through a variational
approach [40].
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